

Journal of Alloys and Compounds 253-254 (1997) 547-549

Effect of HF pretreatment on H_2 reactivity with LaNi₅ and LaNi_{4.7}Al_{0.3}

H. Uchida^{a,*}, T. Inoue^a, T. Tabata^a, S. Seki^a, H.H. Uchida^b, F. Aono^c, T. Nakazawa^c, H. Kikuyama^d, R. Hirayama^d

^aDepartment of Applied Physics, Tokai University, 1117 Kita-Kaname, Hiratsuka 259-12 Kanagawa, Japan

^bDepartment of Resources and Environmental Science, Tokai University, 1117 Kita-Kaname, Hiratsuka 259-12 Kanagawa, Japan

^eBenkan Corporation, 2-5-13 Ohmori-Kitaguchi, Sannou, Ohta-ku, Tokyo 143, Japan

^dHashimoto Chemical Corporation, 2-6-3, Nishihonmachi Nishi-Ku, Osaka 590, Japan

Abstract

The effect of fluorination of $LaNi_5$ and $LaNi_{4.7}Al_{0.3}$ surfaces on the initial activation of hydrogen absorption was examined at 298 K by the measurement of H₂ reaction probability under ultra high vacuum and low vacua conditions, and by the measurement of the initial rate of hydrogen absorption at pressures over 10⁶ Pa. The HF pretreated $LaNi_{4.7}Al_{0.3}$ and $LaNi_5$ alloys degassed up to ultra high vacuum, and no improvement or even a marked reduction in the H₂ reaction rate was observed. However, the HF pretreated $LaNi_{4.7}Al_{0.3}$ degassed at low vacuum exhibited a much higher reactivity than the sample degassed in ultra high vacuum. The results obtained show the importance of alumina present in the fluorination, and a possible enhancement of catalytic properties by the oxidation of fluorinated $LaNi_{4.7}Al_{0.3}$.

Keywords: LaNi₅; LaNi_{4.7}Al_{0.3}; HF treatment; Reactivity

1. Introduction

During the initial activation of LaNi₅ [1] and $LaNi_{5-x}(Al,Mn,Co)_x$ alloys [2], the surface conditions markedly affect the rate controlling step of the H₂ absorption. The LaNi₅ with a clean surface exhibits the highest reaction probability, r=1, even at room temperature. However, r is decreased by several orders of magnitude as the surface becomes contaminated by degassing at lower vacuum [1]. The H₂ dissociation is a result of the interaction between the H₂ antibonding orbitals and the lobe shaped orbitals of the d electrons of the transition metal surface [3]. The electron transfer between the surface and H_2 is decisive for the H_2 dissociation [4]. Recently, intensive studies have been made by Suda and his coworkers [5] on the marked effect of fluorination of the surfaces of H storage alloys on the hydriding rate. However, the role of the fluorinated layers in the H₂ absorption is not clear. This study investigated the effect of fluorination of LaNi₅ and LaNi_{4.7}Al_{0.3} surfaces on the initial activation in order to give additional information on this fluorination effect.

2. Experimental procedure

Massive and powder samples of LaNi₅ and LaNi_{4.7}Al_{0.3} alloys were prepared by crushing their ingots produced by arc melting in Ar atmosphere. The structure and chemical composition of these samples were controlled by using inductively coupled plasma emission spectroscopy and X-ray diffraction, respectively. The fluorination treatment was made by soaking the samples into a 100% HF solution(12 N purity) for 3 h at 293 K, and then drying them in a 10⁵ Pa N₂ gas flow at 393 K for 3 h. Auger electron spectroscopy of the formed fluorinated layers indicated a thickness of about 50 nm.

The volumetric Wagener's method was used to measure number of adsorbed or absorbed H₂ molecules per square cm, N, and the reaction probability, r, defined as the ratio of the rate of reacted H₂ molecules to the impinging rate of H₂ molecules on the metal surface. Details of this measurement method are described elsewhere [6]. A 0.2 g massive sample of LaNi₅ or LaNi_{4.7}Al_{0.3} with a surface area of 1 cm⁻² was used for the measurements of r and N at 298 K. Before hydrogenation, the whole pyrex glass system and the samples were degassed to a pressure of $5 \cdot 10^{-6}$ to $5 \cdot 10^{-8}$ Pa at temperatures up to 850 K. During the measurements,

^{*}Corresponding author.

partial pressures of the system were monitored by mass spectrometry.

The initial rate of activation was measured using a Sieverts' type apparatus in the hydrogen solid solution regions where no pulverization, i.e., no marked changes in the surface layers took place. An intentional evacuation of the apparatus was made down to only 5-10 Pa in order to examine the contamination effect of the HF pretreated samples on the reaction rate. The effect of vacua on the initial rate, details of the measurement method and the effect of the sample mass, cell materials and thermal conductivity on the rate are reported elsewhere [7].

3. Results and discussion

3.1. The effect of the HF pretreatment on reaction probability

Fig. 1 shows the changes in *r* for LaNi₅ samples with and without the HF pretreatment. An untreated LaNi₅ sample degassed under ultra high vacuum 10^{-8} Pa, where no residual gas contaminated the surface before H₂ exposure, exhibits the highest rate, r=1 at the initial stage. That rate decreases for an untreated LaNi₅ which was degassed in a lower vacuum of 10^{-6} Pa where the main residual gas was H₂O with partial pressures ranging from 10^{-7} to 10^{-5} Pa during the measurement. For the HF pretreated LaNi₅ samples, the *r* values ranging between $r=10^{-2}-10^{-3}$. They are independent of the degassing conditions and are even lower than those for the untreated LaNi₅ sample

Fig. 2 shows the rate changes for LaNi_{4.7}Al_{0.3} samples with and without the HF pretreatment. Untreated samples exhibit a decrease of r values from 10^{-2} to 10^{-4} . independent of the degassing conditions. An untreated sample degassed in 10⁻⁶ Pa exhibits slightly higher initial r values than the sample degassed in higher vacuum 10^{-8} Pa, which may be ascribed to the enhancement of r by the partial oxidation of Al [9]. For the HF pretreated samples, a sample degassed in a low vacuum 10^{-6} Pa exhibits r values lying between $r=1 \times 10^{-1}$ to 4×10^{-3} which are higher than for the other sample degassed in a ultra high vacuum 10^{-8} Pa. With increasing N, the pretreated sample degassed in 10⁻⁶ Pa tends toward a constant value of $r=4\times10^{-3}$ which is higher than the r values for the untreated samples. Compared to the results for the HF pretreated LaNi₅, it is interesting to note that the oxidation or hydroxidation of the fluorinated LaNi4.7Al0.3 surface, which can take place in the low vacuum degassing before H_2 exposure, seems to be crucial to induce a catalytic activity to promote the H₂ dissociation. This is in good agreement with many reports for the enhancement of catalytic reactivity surfaces by mixing alumina and AlF₄ [10] or the fluorination of alumina [11] where the O atoms near the alumina surface are replaced by F and OH,

Fig. 1. Changes of the reaction probability, *r*, as a function of the H₂ amount absorbed by LaNi₅ samples with and without the HF pretreatment after vacuum degassing at 10^{-8} Pa= \blacksquare , \Box ; at 10^{-6} Pa= \blacktriangle , \triangle respectively.

Fig. 2. Changes of *r* as a function of the H₂ amount absorbed by LaNi_{4.7} Al_{0.3} samples with and without the HF pretreatment after vacuum degassing at 10^{-8} Pa= \Box , \blacksquare , and at 10^{-6} Pa= \triangle , \blacktriangle respectively.

3.2. The effect of the HF pretreatment on initial activation

The powder samples of the HF pretreated LaNi₅ and LaNi_{4.7}Al_{0.3} with a 500 μ m diameter were exposed to H₂ at 298 K immediately after the pressure of the system had attained 5 to 10 Pa by 5 min evacuation at 298 K. At these low vacua conditions, the partial pressures of residual gases in the cell were in the order $H_2O > H_2 > CO_2 >$ CO. After the 6 months air exposure of untreated LaNi₅ and LaNi_{4.7}Al_{0.3}, no significant activation was seen at 298 K within 2000 s. However, in spite of such a long exposure to air after the HF pretreatment, the HF treated LaNi₅ and LaNi_{4.7}Al_{0.3} could be activated at a H₂ pressure 10⁶ Pa and 298 K as shown in Fig. 3. Under these experimental conditions, the treated LaNi_{4.7}Al_{0.3} tended to exhibit higher activation rates than the treated LaNi₅. However, further investigations are needed by changing the experimental conditions to confirm the H_2 processes. In the light of the results the fluorinated layers on LaNi₅

Fig. 3. The initial activation of the HF pretreated LaNi₅ and LaNi_{4.7}Al_{0.3} exposed to air for 6 months, at a H₂ pressure of 10₆ Pa at 298 K. (M=LaNi₅, LaNi_{4.7}Al_{0.3})

seems to act simply as protective layers to contaminations rather than as catalytic layers.

4. Conclusions

The formation of fluorinated surface layers appears to inhibit H_2 dissociation on a clean LaNi₅ surface at 298 K. In contaminative conditions like in low vacua or air, the fluorinated layers seem to act as protective layers to the contaminations on the LaNi₅ surface, rather than as catalytic layers on the LaNi_{4.7}Al_{0.3} surface. For the fluorinated LaNi_{4.7}Al_{0.3} surface, the enhancement of the H₂ reactivity by low vacuum degassing of the sample indicates a possible enhancement of the surface catalytic properties by the oxidation of the fluorinated LaNi_{4.7}Al_{0.3} surface.

Acknowledgments

This work was partially supported by the Energy Materials Project, the General Research Organization, Tokai University.

References

- H. Uchida, Y. Ohtani, M. Ozawa and T. Kawahata, J. Less-Common Met., 172–174 (1991) 983.
- [2] H. Uchida, S. Seki and S. Seta, J. Alloys Comp., 231 (1995) 403.
- [3] M. Tsukada and W. Brenig, Surf. Sci., 151 (1985) 503.
- [4] J.K. Norskov and F. Besenbacher, J. Less-Common Met., 130 (1987) 475.
- [5] X.-L. Wang and S. Suda, J. Alloys Comp., 231 (1995) 380.
- [6] E. Fromm and H.G. Wulz, J. Less-Common Met., 101 (1984) 469.
- [7] H. Uchida and M. Ozawa, Z. Phys. Chem. N.F., 147 (1986) 77.
- [8] T. Suzuki, T. Kawahata and H. Uchida, Z. Phys. Chem., 181 (1993) 423.
- [9] H. Uchida, T. Suzuki, S. Nakazawa and S. Kashima, Z. Phys. Chem., 181 (1993) 429.
- [10] S. Kowalak, Acta Chim. Acad. Sci. Hung., 107 (1981) 19.
- [11] S. Matsumoto, Bull. Chem. Soc. Japan., 3 (1979) 313.
- [12] J.B. Peri, J. Phys. Chem., 69 (1965) 220.